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Resumen 

El cultivo de setas comestibles es una actividad de creciente importancia en la industria alimentaria y la biotecnología debido a su alto 
valor nutricional y su potencial en la producción de compuestos bioactivos. Sin embargo, la producción enfrenta múltiples desafíos, desde 
la selección de sustratos hasta el control de contaminantes. La automatización mediante procesamiento de imágenes se presenta como 
una solución innovadora para optimizar fases de cultivo, permitiendo un monitoreo preciso y en tiempo real de los parámetros críticos. 
Para la elaboración de esta revisión se realizó un análisis sistemático de la literatura científica publicada entre 2013 y 2025, considerando 
estudios indexados en bases de datos especializadas y clasificándolos de acuerdo con su enfoque tecnológico y biológico. De la literatura 
analizada, más del 60 % de los estudios reportan incrementos de eficiencia superiores al 30 % en la detección de contaminantes o en la 
estimación de crecimiento micelial mediante visión por computadora, mientras que un 45 % de las investigaciones recientes aplican redes 
neuronales convolucionales (CNN) para la segmentación y clasificación automática de imágenes fúngicas. Este artículo aborda, a manera 
de revisión, la aplicación del procesamiento de imágenes en la automatización del cultivo de setas comestibles, explorando sus beneficios 
en cada etapa del proceso productivo y analizando el potencial de las tecnologías actuales y emergentes para transformar la producción 
de hongos a escala industrial. 
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A smart automation in mushroom cultivation: a review on the 
application of image processing from research to production 

 
Abstract 

The cultivation of edible mushrooms is an increasingly important activity in the food industry and biotechnology due to their high 
nutritional value and potential in the production of bioactive compounds. However, production faces multiple challenges, from substrate 
selection to contaminant control. Automation through image processing presents an innovative solution to optimize cultivation phases, 
allowing precise and real-time monitoring of critical parameters. For the preparation of this review, a systematic analysis of the scientific 
literature published between 2013 and 2025 was conducted, considering studies indexed in specialized databases and classifying them 
according to their technological and biological focus. According to the reviewed literature, over 60 % of studies reported efficiency 
increases above 30 % in contaminant detection or mycelial growth estimation using computer vision, while 45 % of recent works 
implemented convolutional neural networks (CNNs) for automated fungal image segmentation and classification. This article addresses, 
as a review, the application of image processing in the automation of edible mushroom cultivation, exploring its benefits at each stage of 
the production process and analyzing the potential of current and emerging technologies to transform mushroom production on an 
industrial scale. 
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I. INTRODUCCIÓN 

El cultivo de setas comestibles es una actividad de creciente 
importancia en la industria alimentaria y la biotecnología 
debido a su alto valor nutricional, su versatilidad en la 
gastronomía y su potencial en la producción de compuestos 
bioactivos con aplicaciones en la salud y la industria 
farmacéutica [1]-[3]. Especies como Pleurotus ostreatus, 

Agaricus bisporus y Lentinula edodes han sido ampliamente 
estudiadas y cultivadas a nivel industrial debido a su demanda 
en mercados nacionales e internacionales [3], [4]. Además, este 
tipo de cultivo juega un papel crucial en la economía circular, 
ya que permite el aprovechamiento de residuos agrícolas como 
sustratos de crecimiento [4], [5]. 

No obstante, la producción de setas enfrenta múltiples 
desafíos, desde la selección de sustratos con alto rendimiento 
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hasta el control de contaminantes y la optimización de las 
condiciones de crecimiento [6]. Tradicionalmente, estas tareas 
han dependido de la observación manual y la experiencia de los 
productores, lo que puede llevar a variabilidad en la calidad y 
eficiencia del cultivo [7]. En este contexto, el cultivo de setas 
comestibles representa un campo emergente donde estas 
tecnologías pueden contribuir al control automatizado de 
variables críticas, como la inoculación, el monitoreo de 
crecimiento micelial, la detección de contaminantes y la 
clasificación postcosecha. Aunque la mayoría de los avances 
tecnológicos se han enfocado en cultivos vegetales, en años 
recientes se han reportado investigaciones orientadas 
directamente al uso de procesamiento de imágenes en hongos. 
Entre ellas se incluyen estudios que implementan 
reconocimiento de imágenes para el control de inoculación en 
Pleurotus eryngii, algoritmos de medición in situ basados en 
redes neuronales para Oudemansiella raphanipies, y la 
generación de bases de datos anotadas de imágenes de P. 
ostreatus con fines de aprendizaje automático [7–9]. Estos 
trabajos evidencian que la automatización mediante visión 
artificial en hongos no solo es posible, sino que constituye una 
tendencia científica en expansión, con implicaciones directas en 
la mejora de la eficiencia, la estandarización de procesos y la 
reducción de la dependencia del monitoreo manual. 

El procesamiento de imágenes ha transformado diversos 
sectores de la producción agrícola. En cultivos de gran escala 
como el manzano, el maíz y la vid, se emplean cámaras 
multiespectrales y modelos de visión artificial para la detección 
temprana de enfermedades [10]-[12], el monitoreo de la salud 
de las plantas y la optimización del riego en función de la 
humedad del suelo [13], [14]. En la cosecha de frutas como 
fresas y tomates, se han implementado sistemas de recolección 
automatizada que utilizan visión por computadora para 
identificar el estado de maduración y clasificar los frutos según 
su calidad [15], [16]. En la industria avícola, el procesamiento 
de imágenes se emplea para la detección de defectos en los 
huevos y la supervisión del bienestar de las aves en tiempo real 
[17], [18]. 

En el caso del cultivo de setas, estas tecnologías pueden ser 
aplicadas para mejorar la producción de manera significativa. 
Por ejemplo, el uso de algoritmos de aprendizaje profundo, los 
cuales ya han sido utilizados en el análisis de imágenes 
satelitales para la detección de cambios en la cobertura del suelo 
y en el diagnóstico automatizado de enfermedades en hojas de 
cultivos como el tomate [19], [20], podría facilitar la 
identificación de los sustratos con mejor desempeño en 
términos de colonización micelial. La visión artificial, 
ampliamente utilizada en la industria alimentaria para la 
inspección de calidad de alimentos, herramientas de control y 
clasificación de los alimentos [21], podría ser aplicada para la 
detección de contaminación en medios de cultivo mediante el 
análisis de imágenes de placas de Petri y sustratos inoculados. 

Durante la incubación, sensores ópticos similares a los 
empleados en invernaderos inteligentes [22] pueden integrarse 
con algoritmos de procesamiento de imágenes para monitorear 
la expansión del micelio, permitiendo ajustes automáticos en la 
temperatura y humedad del ambiente. En la fase de 

fructificación, cámaras hiperespectrales, las cuales han sido 
utilizadas para evaluar el contenido de azúcar y la firmeza en 
frutas como manzanas y melones [23], podrían emplearse para 
monitorear el crecimiento y determinar el momento óptimo de 
cosecha de los cuerpos fructíferos. La automatización de la 
cosecha, ya implementada en la recolección de hortalizas como 
lechugas y espárragos mediante robots equipados con visión 
por computadora [24], [25], podría adaptarse al cultivo de setas 
para reducir la manipulación manual y aumentar la eficiencia 
del proceso. 

Además, el Internet de las Cosas (IoT) ha sido ampliamente 
aplicado en la supervisión en tiempo real de maquinaria 
agrícola y en la gestión eficiente de recursos hídricos en cultivos 
de precisión [26]. En la producción de setas, esta tecnología 
podría utilizarse para conectar sensores de imagen con sistemas 
de control automatizados que optimicen las condiciones 
ambientales y minimicen el desperdicio de insumos. La 
integración de redes neuronales, utilizadas en la clasificación 
automatizada de productos en la industria manufacturera [27], 
permitiría la detección de anomalías en las setas, facilitando su 
clasificación y mejorando la calidad del producto final. 

Este artículo aborda, a manera de revisión, la aplicación del 
procesamiento de imágenes en la automatización del cultivo de 
setas comestibles, explorando sus beneficios en cada etapa del 
proceso productivo y analizando el potencial de las tecnologías 
actuales y emergentes para transformar la producción de hongos 
a escala industrial. 

II. METODOLOGÍA 

La presente investigación se desarrolló como una revisión 
sistemática orientada a analizar el estado actual del 
conocimiento sobre la aplicación del procesamiento de 
imágenes y las tecnologías de automatización en el cultivo de 
hongos comestibles. Para ello, se efectuó una búsqueda 
exhaustiva de información científica publicada entre 2013 y 
2025, considerando artículos de investigación, revisiones, 
reportes técnicos y ponencias en conferencias especializadas. 
Las fuentes consultadas incluyeron bases de datos académicas 
de alto impacto como Scopus, Web of Science, y Google 
Scholar, con el propósito de garantizar la calidad, actualidad y 
relevancia de las referencias seleccionadas. 

Las búsquedas se realizaron empleando combinaciones de 
palabras clave en inglés y español tales como “mushroom 
cultivation”, “image processing”, “computer vision”, 
“automation”, “artificial intelligence”, “deep learning”, “IoT 
agriculture” y “fungal growth monitoring”. Se priorizó la 
recuperación de estudios que presentaran aplicaciones directas 
o potencialmente adaptables al cultivo de setas, así como 
aquellos que describieran metodologías de análisis de 
imágenes, sistemas de control automatizado o estrategias de 
monitoreo ambiental mediante visión artificial y aprendizaje 
automático. 

Inicialmente se identificaron más de 180 publicaciones 
relacionadas con los temas de automatización agrícola, 
biotecnología fúngica y procesamiento digital de imágenes. 
Posteriormente, se aplicaron criterios de inclusión y exclusión 
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enfocados en la pertinencia metodológica, la disponibilidad de 
información completa y la claridad en la descripción de los 
procedimientos empleados. Solo se consideraron artículos 
revisados por pares y publicados en revistas o editoriales 
científicas reconocidas. Tras esta depuración, se seleccionaron 
68 documentos que constituyeron el cuerpo principal de 
análisis. 

Las publicaciones seleccionadas se organizaron en tres líneas 
temáticas: (1) identificación, comparación y caracterización de 
sustratos mediante procesamiento de imágenes; (2) 
automatización de procesos de inoculación e incubación a partir 
de sistemas de visión artificial, sensores ópticos y redes 
neuronales; y (3) monitoreo, cosecha y postcosecha 
automatizadas utilizando técnicas de visión hiperespectral, 
robótica y aprendizaje profundo. Dentro de cada categoría se 
examinaron las metodologías implementadas, los tipos de 
sensores o cámaras empleados, los algoritmos de segmentación 
y clasificación, así como las aplicaciones específicas reportadas 
para distintas especies de hongos comestibles. 

Asimismo, se revisaron estudios provenientes de áreas 
afines, como la agricultura de precisión, la microbiología y la 
ingeniería agroalimentaria, con el fin de identificar 
metodologías extrapolables al cultivo de setas. Este enfoque 
permitió establecer relaciones entre los avances tecnológicos en 
distintos sectores productivos y su posible adaptación a la 
biotecnología fúngica. 

Cabe destacar que las Fig. 1 y 2 incluidas en este trabajo 
provienen de datos sin publicar, generados por el grupo de 
investigación de los autores, y se presentan únicamente con 
fines ilustrativos para mostrar el potencial del procesamiento de 
imágenes en la evaluación del crecimiento micelial y la 
detección de contaminantes. Dichos datos fueron obtenidos en 
condiciones controladas y aún no han sido sometidos a 
publicación formal, pero su inclusión contribuye a ejemplificar 
los alcances prácticos de las herramientas analizadas en esta 
revisión. 

La información obtenida de las fuentes seleccionadas fue 
analizada de manera crítica y comparativa, destacando los 
enfoques metodológicos más sólidos, las tecnologías 
emergentes con mayor aplicabilidad y los retos identificados 
para su integración en sistemas de producción de hongos a 
escala industrial. El análisis cualitativo permitió identificar 
tendencias generales, vacíos de conocimiento y posibles líneas 
de investigación futura orientadas hacia la consolidación de 
sistemas inteligentes para el cultivo de setas comestibles. 

III. IDENTIFICACIÓN, COMPARACIÓN Y CARACTERIZACIÓN 

DE SUSTRATOS ÓPTIMOS  

El éxito en la producción de setas comestibles depende en 
gran medida de la selección del sustrato adecuado, ya que este 
influye en la velocidad de colonización micelial, la eficiencia 
en la producción de cuerpos fructíferos y la resistencia a 
contaminantes [28]. Tradicionalmente, la evaluación de 
sustratos ha sido un proceso empírico basado en observaciones 
manuales, lo que genera variabilidad y limita la 
reproducibilidad de los resultados [29], [30]. Sin embargo, la 

automatización mediante procesamiento de imágenes y 
aprendizaje automático ofrece un enfoque más preciso para 
analizar las propiedades físicas y químicas del sustrato, 
optimizando así la toma de decisiones en el proceso productivo. 

El procesamiento de imágenes ha sido ampliamente utilizado 
en la caracterización de materiales agrícolas en distintos 
ámbitos. En la industria de los cereales, se emplea para 
identificar defectos en los granos y evaluar su calidad visual 
[31]-[33]; en la industria forestal, se usa para determinar la 
porosidad de la madera y la detección de incendios forestales 
[34], [35]; y en la producción de hortalizas, se ha implementado 
en sistemas de clasificación automática basados en color, forma 
y textura [36]. Aplicando estas mismas metodologías al cultivo 
de setas, se esperaría poder caracterizar sustratos a partir de 
imágenes de alta resolución, identificando parámetros como 
textura, distribución de partículas, retención de agua y 
colonización micelial mediante técnicas de segmentación y 
análisis de patrones. 

Diversos estudios han explorado el impacto de diferentes 
sustratos en el crecimiento de setas, empleando herramientas 
automatizadas para evaluar su eficiencia. La Tabla 1 presenta 
un resumen de investigaciones previas sobre la caracterización 
de sustratos mediante procesamiento de imágenes y otras 
técnicas automatizadas. 

 
TABLA I 

METODOLOGÍAS DE ANÁLISIS DE IMÁGENES EN LA EVALUACIÓN DE 

SUSTRATOS FÚNGICOS 

Especie Sustratos evaluados Método de 
análisis 

Ref. 

Beauveria bassiana, 
Trichoderma 
harzianum 

Cáscara de arroz, 
naranja, papa, pulpa, 
bagazo, fibras, paja 

Microscopía 
óptica 

[37] 

Micena, Boletus, 
Exidia 

Madera, corteza, 
suelo, fruta, musgo, 
piedra 

CNN y ViT [38] 

Pleurotus 
geesteranus 

Cáscara de Camellia 
oleifera 

Estadística de 
imágenes 

[39] 

Pleurotus ostreatus, 
Coprinus comatus 

Paja Lightroom + 
Python 

[40] 

Ganoderma 
resinaceum 

Flores de rosa, paja 
de lavanda 

Microscopía 
electrónica 

[41] 

Candida spp., 
Aspergillus spp., 
Trichophyton, 
Rhizopus 

Sustratos + 
nanopartículas 
metálicas 

SERS + PCA y 
LDA 

[42] 

Candida auris, 
Candida albicans 

BHI, agar SD, RPMI 
1640 

Espectroscopia 
Raman 

[43] 

Schizophyllum 
commune 

Medios con glucosa 
0.1% y 3.9% 

Imágenes en 
escala de grises 

[44] 

Fomes fomentarius, 
Ganoderma spp., etc. 

Cuerpos fructíferos, 
esclerocios 

Algoritmo 
Watershed 

[45] 

P. ostreatus Aserrín, agua, cal, 
ceniza de biomasa 

Imágenes + 
CNN 

[27] 

 
Estos estudios destacan cómo el procesamiento de imágenes 

puede ser una herramienta clave en la identificación y 
comparación de sustratos, permitiendo una evaluación objetiva 
y cuantificable de sus propiedades. Además, el uso de 
inteligencia artificial ha demostrado ser eficaz para predecir la 
productividad de los cultivos en función de los parámetros 
fenotípicos de los cuerpos fructíferos [46]. 
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El procesamiento de imágenes facilita la toma de decisiones 
en la selección de sustratos al proporcionar datos cuantificables 
sobre el crecimiento micelial y su uniformidad. En la Fig. 1, se 
presenta la evaluación del desarrollo micelial en un medio de 
cultivo estándar, como lo es el Agar Papa Dextrosa, utilizando 
segmentación y detección de bordes para identificar la 
expansión del micelio a lo largo de 7 días; este análisis permite 
una evaluación objetiva de la tasa de colonización y la 
uniformidad del crecimiento, facilitando la optimización de las 
condiciones de incubación. 

 

 
Fig. 1. Evaluación del crecimiento micelial en un medio de cultivo 

estándar (PDA) mediante procesamiento de imágenes. Se muestra la 
expansión del micelio a lo largo de A) 1, B) 2, C) 5 y D) 7 días, con 
segmentación y detección de bordes (línea verde) para cuantificar su 

desarrollo (N. J. Carbajal-Palacios, comunicación personal, junio 2025). 
 

Este enfoque podría permitir el analizar patrones de 
crecimiento, evaluar la tasa de colonización y detectar posibles 
anomalías en el desarrollo fúngico. La integración de estas 
técnicas con algoritmos de aprendizaje automático no solo 
optimizaría la selección del sustrato más eficiente, sino que 
también permitiría la generación de modelos predictivos que 
faciliten futuras optimizaciones en la producción de setas. Al 
reducir el tiempo de experimentación y minimizar la 
variabilidad en los resultados, la combinación de procesamiento 
de imágenes e inteligencia artificial representa un avance 
significativo hacia la automatización del cultivo, mejorando la 
eficiencia y sostenibilidad del proceso productivo. 

IV. AUTOMATIZACIÓN EN LA INOCULACIÓN E 

INCUBACIÓN 

La fase de inoculación e incubación es crucial en la 
producción de setas comestibles, ya que durante estos procesos 
se determina el éxito de la colonización del sustrato por parte 
del micelio y la prevención de contaminantes que puedan 
afectar el rendimiento del cultivo [47], [48]. Tradicionalmente, 
el monitoreo de la colonización micelial y la detección de 
contaminantes se ha basado en inspecciones visuales manuales, 
lo que introduce un alto grado de variabilidad en la evaluación 
y puede retrasar la detección temprana de problemas [49]. Sin 

embargo, la implementación de sistemas de automatización 
mediante el procesamiento de imágenes, el aprendizaje 
automático y sensores de monitoreo ambiental puede permitir 
optimizar estos procesos, aumentando la eficiencia y 
reduciendo pérdidas en la producción. 

El procesamiento de imágenes ha sido utilizado ampliamente 
en la microbiología y la agricultura para el análisis y 
diferenciación de organismos en medios de cultivo. En la 
industria biomédica, por ejemplo, la segmentación de imágenes 
se emplea para identificar colonias bacterianas en placas de 
Petri, permitiendo un diagnóstico más rápido de infecciones 
[50], [51]. De manera similar, en la agricultura de precisión, la 
visión por computadora es utilizada para diferenciar entre 
plagas y cultivos saludables mediante el reconocimiento de 
patrones y colores específicos en hojas y frutos [52], [53]. 
Aplicando estas mismas metodologías al cultivo de setas, es 
posible desarrollar sistemas capaces de distinguir entre el 
crecimiento del micelio y la presencia de organismos 
contaminantes en el sustrato. 

Un ejemplo de esta aplicación en el cultivo de hongos se 
observa en la Fig. 2, donde se muestra la diferenciación entre la 
expansión del micelio y la presencia de un organismo 
contaminante mediante segmentación de imágenes y análisis de 
textura. En esta imagen, la segmentación basada en umbrales de 
intensidad y análisis de bordes permite resaltar la estructura del 
micelio, diferenciándolo de colonias bacterianas o fúngicas 
indeseadas. Este enfoque facilita la detección temprana de 
contaminaciones, permitiendo la implementación de estrategias 
correctivas antes de que comprometan la totalidad del cultivo. 

 

 
Fig. 2. Diferenciación entre el crecimiento del micelio y la 

presencia de un organismo contaminante mediante procesamiento de 
imágenes. Se emplearon técnicas de segmentación y análisis de textura para 
resaltar la estructura del micelio y distinguirlo de colonias contaminantes (O. 

L. Espinoza-Alvarez, comunicación personal, junio 2025). 

 
Además de la diferenciación visual, la integración de 

sensores ópticos y espectroscópicos en los sistemas de 
monitoreo de la incubación ha demostrado ser efectiva para 
evaluar parámetros ambientales críticos como la temperatura, la 
humedad y la concentración de CO₂ [54]-[57]. Tecnologías 
como la espectroscopia de infrarrojo cercano (NIR), utilizada 
en la industria alimentaria para evaluar la calidad de productos 
agrícolas [58], [59], pueden aplicarse en el monitoreo de la 
actividad metabólica del micelio, proporcionando información 
en tiempo real sobre su estado fisiológico y su tasa de 
crecimiento. 
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C) D)
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Otra innovación clave en la automatización de la incubación 
es el uso de modelos de aprendizaje profundo para predecir la 
velocidad de colonización del micelio en función de imágenes 
capturadas a lo largo del tiempo. En la industria láctea, por 
ejemplo, estos modelos han sido empleados para monitorear la 
fermentación de productos como el yogur y el queso, 
permitiendo ajustar las condiciones de incubación en función 
del desarrollo microbiano [60], [61]. En el caso de los hongos, 
esta tecnología podría estimar el tiempo óptimo de incubación 
y ajustar variables ambientales de manera automatizada, 
asegurando un crecimiento uniforme y reduciendo la 
variabilidad entre lotes de producción. 

En conjunto, la implementación de procesamiento de 
imágenes, sensores ambientales y algoritmos de inteligencia 
artificial en la inoculación e incubación de setas no solo 
optimizaría la detección de contaminantes y la evaluación del 
crecimiento micelial, sino que también contribuirían a la 
estandarización del proceso productivo. Estas tecnologías 
permitirían reducir la dependencia de la inspección manual, 
mejorar la trazabilidad del cultivo y garantizar condiciones 
óptimas para el desarrollo de las setas, promoviendo así una 
producción más eficiente y sostenible. 

V. DESARROLLO, COSECHA Y POSTCOSECHA MEDIANTE 

PROCESAMIENTO DE IMÁGENES 

El monitoreo del crecimiento y desarrollo de los cuerpos 
fructíferos, así como la optimización de los procesos de cosecha 
y postcosecha, son aspectos fundamentales en la producción de 
setas comestibles [7], [8]. La calidad del producto final depende 
de múltiples factores, incluyendo la morfología de los cuerpos 
fructíferos, la uniformidad en el desarrollo, el punto óptimo de 
cosecha y las condiciones de almacenamiento [62]. 
Tradicionalmente, estas etapas han requerido inspección visual 
y manipulación manual, lo que introduce variabilidad y 
aumenta los costos de producción [55]. Sin embargo, la 
implementación de técnicas de procesamiento de imágenes, 
inteligencia artificial y automatización podrían mejorar la 
eficiencia y precisión en cada una de estas fases, facilitando una 
producción más estandarizada y de mayor calidad. 

El procesamiento de imágenes se ha aplicado en la industria 
agrícola para el análisis de crecimiento y maduración de 
diferentes productos [63]. En cultivos como el tomate y la 
manzana, la visión artificial es utilizada para evaluar el tamaño 
y el color de los frutos, asegurando que la cosecha se realice en 
el momento óptimo [63], [64]. En la producción de setas, estos 
mismos principios podrían aplicarse para monitorear la 
morfología de los cuerpos fructíferos a lo largo de su desarrollo, 
permitiendo la detección de irregularidades y la predicción del 
punto exacto de cosecha. 

Uno de los enfoques más prometedores en este ámbito es el 
uso de cámaras multiespectrales para evaluar el estado 
fisiológico de las setas en tiempo real. Estas cámaras, 
ampliamente utilizadas en el control de calidad de productos 
hortofrutícolas, permiten analizar la composición de la 
superficie de los cuerpos fructíferos y detectar defectos no 
visibles al ojo humano [63]. Aplicadas al cultivo de hongos, 

pueden emplearse para identificar problemas como 
deshidratación, decoloración o daños estructurales antes de la 
cosecha, optimizando así la selección de productos de alta 
calidad. 

Además del monitoreo del crecimiento, el procesamiento de 
imágenes ha sido clave en la automatización de la cosecha de 
productos agrícolas de alto valor, como las fresas y los 
espárragos, mediante sistemas robóticos equipados con visión 
por computadora [65], [66]. En el caso de las setas, esta 
tecnología permitiría el desarrollo de sistemas de recolección 
automática capaces de identificar el tamaño, forma y madurez 
de los cuerpos fructíferos, reduciendo la manipulación manual 
y minimizando el riesgo de daño al producto. 

En la postcosecha, la visión artificial podría jugar un papel 
crucial en el control de calidad y clasificación de las setas antes 
de su comercialización. Técnicas como el análisis 
hiperespectral, utilizadas en la industria cárnica para evaluar la 
frescura de la carne [67], pueden aplicarse en la producción de 
hongos para detectar signos tempranos de descomposición o 
contaminación. Del mismo modo, algoritmos de 
reconocimiento de patrones pueden emplearse para clasificar 
las setas según su tamaño y textura, asegurando un producto 
homogéneo y atractivo para el mercado. Un ejemplo de esta 
aplicación se encuentra en la industria citrícola, donde sistemas 
de visión artificial son utilizados para clasificar naranjas y 
limones en función de su diámetro y uniformidad de la cáscara, 
descartando aquellos con defectos superficiales [64], [68]. 
Aplicando esta tecnología en la producción de setas, se pueden 
desarrollar sistemas automatizados que evalúen la forma y 
firmeza de los cuerpos fructíferos, identificando aquellos que 
cumplen con los estándares de calidad y separándolos de los 
especímenes que presenten irregularidades o signos de 
descomposición. 

En conjunto, la integración de procesamiento de imágenes, 
aprendizaje automático y robótica en la producción de setas 
ofrece un enfoque innovador para mejorar la eficiencia y 
calidad del producto final. Estas herramientas no solo permiten 
reducir la variabilidad en la producción, sino que también abren 
nuevas oportunidades para la automatización de procesos clave, 
desde el monitoreo del crecimiento hasta la clasificación 
postcosecha, asegurando una producción más rentable, 
sostenible y adaptada a los estándares de calidad del mercado 
global. 

VI. ANÁLISIS DE INFORMACIÓN Y PERSPECTIVAS FUTURAS 

El uso de procesamiento de imágenes y automatización en el 
cultivo de setas comestibles representa un área con gran 
potencial de desarrollo tecnológico, aunque aún se encuentra en 
una etapa inicial de aplicación. Estas herramientas pueden 
contribuir significativamente a la optimización de cada fase del 
proceso productivo, desde la inoculación hasta la postcosecha, 
mejorando la eficiencia, reduciendo la variabilidad y 
favoreciendo la obtención de un producto final de mayor 
calidad. 

Actualmente, gran parte de las actividades en el cultivo de 
setas dependen de la inspección visual y de la experiencia del 
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productor, lo que introduce un componente subjetivo que 
dificulta la estandarización. La Fig. 3 compara los métodos 
manuales con los procesos automatizados mediante 
procesamiento de imágenes, mostrando cómo estas tecnologías 
permiten una toma de decisiones más precisa y objetiva. Desde 
la detección de uniformidad en la inoculación del sustrato hasta 
la clasificación automatizada en la postcosecha, la visión por 
computadora ofrece la posibilidad de optimizar cada una de las 
etapas productivas, minimizando la manipulación manual y 
aumentando la productividad general del sistema. 

 

 
Fig. 3. Comparación entre el método manual y la implementación de 

procesamiento de imágenes en el cultivo de setas. Elaboración propia. 

 
La implementación de técnicas como la segmentación de 

imágenes y los modelos predictivos basados en aprendizaje 
automático podría facilitar la selección de sustratos de mejor 
rendimiento, evitando la dependencia de ensayos prolongados. 
En la fase de incubación, la diferenciación entre micelio y 
contaminantes mediante análisis de textura permitiría una 
respuesta más rápida ante problemas de contaminación. 
Durante la fructificación, los algoritmos de reconocimiento de 
patrones pueden ayudar a determinar el momento óptimo de 
cosecha, mientras que la recolección automatizada mediante 
visión artificial reduciría el daño mecánico en los cuerpos 
fructíferos. En la postcosecha, la clasificación basada en 
cámaras hiperespectrales favorecería la obtención de un 
producto homogéneo y de alta calidad, facilitando su 
comercialización. 

A futuro, la integración del procesamiento de imágenes con 
tecnologías emergentes como el IoT, la computación en la nube 
y la inteligencia artificial aplicada permitirá establecer sistemas 
de monitoreo remoto en tiempo real. Esto generará entornos 
productivos inteligentes capaces de tomar decisiones 
automáticas basadas en datos cuantificables. Además, el 
desarrollo de modelos de inteligencia artificial especializados 
en hongos podría mejorar la detección de anomalías, la 

predicción del rendimiento y la sostenibilidad de la producción. 
No obstante, persisten desafíos importantes, entre ellos la 
accesibilidad tecnológica para pequeños productores, la 
necesidad de estandarizar metodologías de procesamiento de 
imágenes adaptadas a diferentes especies fúngicas y la 
capacitación técnica en el uso de herramientas automatizadas. 
Superar estas limitaciones será clave para avanzar hacia una 
automatización efectiva y equitativa en el sector de los hongos 
comestibles. 

VII. CONCLUSIONES 

El objetivo de esta revisión se cumplió al identificar de 
manera sistemática el estado actual, las tendencias y los vacíos 
en la aplicación del procesamiento de imágenes y la 
automatización en el cultivo de setas comestibles. Se evidenció 
que el área más desarrollada corresponde al monitoreo y control 
automatizado de la inoculación e incubación, donde 
predominan los sistemas basados en visión por computadora y 
CNN aplicadas a la detección de contaminantes y la evaluación 
del crecimiento micelial. 

En contraste, se identifican vacíos en la automatización de la 
fase de postcosecha y en la integración completa de sistemas 
inteligentes que vinculen sensores, algoritmos de decisión y 
control ambiental en tiempo real. Aun así, la tendencia 
tecnológica dominante se orienta hacia la convergencia de 
procesamiento de imágenes, aprendizaje profundo e IoT, 
configurando la base para sistemas de producción inteligentes. 

En síntesis, la automatización mediada por visión artificial 
representa una estrategia viable y de alto impacto para 
optimizar la producción de setas, reducir la variabilidad y 
fortalecer la sostenibilidad del proceso. La consolidación de 
esta línea dependerá de la colaboración interdisciplinaria entre 
biotecnología, mecatrónica y ciencia de datos, garantizando que 
los avances tecnológicos sean accesibles y adaptables a 
distintos contextos productivos. 
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